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Abstract

Sequential recommendation is a crucial task in understand-
ing users’ evolving interests and predicting their future be-
haviors. While existing approaches on sequence or graph
modeling to learn interaction sequences of users have shown
promising performance, how to effectively exploit temporal
information and deal with the uncertainty noise in evolving
user behaviors is still quite challenging. To this end, in this
paper, we propose a Temporal Graph Contrastive Learning
method for Sequential Recommendation (TGCL4SR) which
leverages not only local interaction sequences but also global
temporal graphs to comprehend item correlations and ana-
lyze user behaviors from a temporal perspective. Specifically,
we first devise a Temporal Item Transition Graph (TITG) to
fully leverage global interactions to understand item correla-
tions, and augment this graph by dual transformations based
on neighbor sampling and time disturbance. Accordingly, we
design a Temporal item Transition graph Convolutional net-
work (TiTConv) to capture temporal item transition patterns
in TITG. Then, a novel Temporal Graph Contrastive Learning
(TGCL) mechanism is designed to enhance the uniformity of
representations between augmented graphs from identical se-
quences. For local interaction sequences, we design a tempo-
ral sequence encoder to incorporate time interval embeddings
into the architecture of Transformer. At the training stage, we
take maximum mean discrepancy and TGCL losses as auxil-
iary objectives. Extensive experiments on several real-world
datasets show the effectiveness of TGCL4SR against state-of-
the-art baselines of sequential recommendation.

1 Introduction
Sequential recommendation (SR) aims to forecast subse-
quent interactions of users by analyzing their historical be-
haviors in a chronological sequence. Employed extensively
across online platforms, SR models capitalize on sequen-
tial dependencies of interactions, thus offering potential ad-
vantages in grasping item correlations and tracking user
interest evolution over non-temporal recommendation sys-
tems (Tang and Wang 2018; Wu et al. 2019; Wang et al.
2023). However, the inherent unpredictability and intricacy
of sequential behaviors amplify the challenges in SR. Tem-
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poral data, often laden with noise, further obfuscates the pre-
cise mapping of user-item interactions (Wang et al. 2019).

Predominantly, SR models in existing literature either uti-
lize sequential modeling for encoding user interaction se-
quences (Hidasi and Karatzoglou 2018; Kang and McAuley
2018; Sun et al. 2019) or transform these sequences into
graph structures for enhanced item correlation mining (Wu
et al. 2019; Xu et al. 2019; Wang et al. 2020). Recent ad-
vancements underscore the significance of employing spe-
cific temporal features, revealing that such features can sub-
stantially augment model performance. For instance, Ti-
SASRec (Li, Wang, and McAuley 2020) introduces a time
interval-aware self-attention mechanism, enabling superior
modeling of item correlations. Likewise, TGSR (Fan et al.
2021) designs a temporal interaction bipartite graph paired
with a collaborative transformer network, adeptly mapping
user interest trajectories. MOJITO (Tran et al. 2023) deploys
attention blocks to encode varied temporal dimensions, en-
riching the understanding of user interest evolution.

Despite these advancements, challenges persist in lever-
aging specific temporal information in SR. First, the multi-
faceted nature of temporal data, whether expressed in abso-
lute or relative terms, poses integration complexities (Tran
et al. 2023). Hence, it’s difficult to appropriately and effec-
tively exploit multi-type temporal information in sequential
recommendations. Second, diverse changes at which user
interests evolve complicate the deciphering of global inter-
est transition patterns (Wang et al. 2020, 2021b). Learn-
ing global transition patterns of user interests is important
and difficult. Third, unpredictable and diverse user behav-
iors tend to introduce noisy information (Wu et al. 2019),
requiring robust and accurate temporal integration in SR.

To address the above challenges, in this paper, we propose
a Temporal Graph Contrastive Learning method for Sequen-
tial Recommendation (TGCL4SR) which leverages not only
local interaction sequential information but also global tem-
poral graphs to comprehend item correlations and analyze
user behaviors. Specifically, to fully leverage global interac-
tions to explore item correlations, we first design a Tempo-
ral Item Transition Graph (TITG), which builds edges be-
tween items from adjacent interactions within a sequence
and takes corresponding timestamps and users as edge at-
tributes. Besides, due to the noise and the large scale of the
proposed temporal graph, we augment the TITG by dual
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transformations based on neighbor sampling and time dis-
turbance. For further analyzing item transition patterns in
augmented TITGs, we devise a Temporal item Transition
graph Convolutional network (TiTConv) to aggregate the
features of neighboring items with absolute time and users
together. Then, to soften data sparsity and uncertainty of
user behaviors, temporal graph contrastive learning includ-
ing subgraph and disturbed contrastive learning is proposed
to improve the uniformity of representations among the aug-
mented graphs stemming from identical sequences. For lo-
cal interaction sequences, a temporal sequence encoder is
designed to incorporate time interval embeddings into the
architecture of Transformer (Vaswani et al. 2017), which ac-
curately captures the user interest evolution. Finally, at the
training stage, apart from the cross-entropy and contrastive
losses, we use Maximum Mean Discrepancy (MMD) (Li,
Swersky, and Zemel 2015) loss to align item representations
from global graphs and local sequences respectively, which
maintains semantic consistency. Extensive experiments on
four public datasets show our proposed TGCL4SR outper-
forms competitive baselines with significant improvements.
We summarize the contributions of this paper as follows:
• To fully comprehend item correlations and analyze user

behaviors from a temporal perspective, we propose a
novel method, namely TGCL4SR, which learns both
global temporal graphs and local interaction sequences.

• We specially design a TITG to integrate global inter-
actions for effectively understanding item correlations.
Moreover, to analyze item transition patterns in the
TITG, we devise a TiTConv to aggregate the features of
neighboring items with absolute time and users.

• For handling the large-scale graph and noisy temporal in-
formation, we augment the TITG by dual transformations
based on neighbor sampling and time disturbance, and
propose a temporal graph contrastive learning strategy to
enhance the robustness and quality of representations.

2 Related Work
In this section, we provide a review of related work, which
can be grouped into sequential recommendation and con-
trastive learning for recommendation.

2.1 Sequential Recommendation
SR models aim to predict the next item a user will con-
sume based on the user’s behavior sequence. Many works
on SR focus on how to capture users’ long-term and short-
term interest patterns. For instance, GRU4Rec (Hidasi and
Karatzoglou 2018), SASRec (Kang and McAuley 2018) and
BERT4Rec (Sun et al. 2019) utilized RNN, Transformer
and BERT respectively. In the meantime, many studies em-
ploy GNNs on various graphs for SR to discover underlying
item transition patterns, such as SR-GNN (Wu et al. 2019)
and GCE-GNN (Wang et al. 2020). Recently, MAERec (Ye,
Xia, and Huang 2023) suggested a light graph-masked en-
coder to avoid noise in data and enhance pattern represen-
tation learning. Since time significantly influences user in-
teraction context, some SR works start to focus on temporal
information utilization. For example, TiSASRec (Li, Wang,

𝒖𝟏

𝒖𝟑

𝒕𝟏

𝒕𝟓

𝒕𝟐

𝒕𝟔

𝒕𝟑

𝒕𝟕

𝒕𝟏, 𝒕𝟐 ,
𝒖𝟏

𝒕𝟔, 𝒕𝟕 ,
𝒖𝟑

𝒕𝟓, 𝒕𝟔 , 𝒖𝟑

𝒕𝟓, 𝒕𝟕 ,
𝒖𝟑

𝒕𝟒

𝒕𝟑, 𝒕𝟒 ,
𝒖𝟐

𝒖𝟐

Figure 1: A toy example of the construction of TITG.

and McAuley 2020) added time interval encoding into SAS-
Rec, which considered absolute position and related time si-
multaneously. TGSR (Fan et al. 2021) used temporal bipar-
tite interaction graphs and designed a temporal collabora-
tive transformer to learn user interest tendencies. Recently,
TiCoSeRec (Dang et al. 2023) found out that uniformly dis-
tributed time intervals improve SR models better than vary-
ing time intervals, so it suggested specific operators to con-
vert origin time intervals into uniform ones. Differently, we
integrate time information into transition graphs and use
time disturbance to tackle noise issues.

2.2 Contrastive Learning for Recommendation
Contrastive learning is an effective unsupervised learning
paradigm in various domains (Chen et al. 2022b; Li et al.
2022, 2023) and has been widely used in SR. For instance,
CL4SRec (Xie et al. 2022) introduced contrastive learn-
ing to SR by augmenting sequences with several opera-
tions. DuoRec (Qiu et al. 2022) considered sequences with
the same target to have similar semantics and made them
pairs of positive samples to conduct contrastive learning.
Discovering that employing contrastive learning on graph
representations (Hassani and Khasahmadi 2020) can ob-
tain global item correlation signals, some works also de-
signed various graph contrastive learning. For example,
SGL (Wu et al. 2021) improved recommendation models
by random nodes and edges dropout to create contrastive
views. GCL4SR (Zhang et al. 2022) first performed graph
contrastive learning on SR by random neighbor sampling
on item transition graphs to get stable item representations
in different subgraphs. LightGCL (Cai et al. 2023) applied
singular value decomposition as graph augmentation to en-
hance global collaborative relation learning process. Differ-
ent from previous works, we focus on conducting graph con-
trastive learning on temporal graphs.

3 Problem Definition
Traditional sequential recommendation systems focus on
predicting the subsequent item a user might interact with by
analyzing their prior interaction sequences. However, such a
method, which primarily leverages sequential information,
may not sufficiently capture intricate relationships embed-
ded in item transitions and their chronological intricacies.
Temporal Item Transition Graph. To delve deeper into
item correlations from a temporal viewpoint, we propose a
Temporal Item Transition Graph (TITG), denoted as G. This
graph effectively merges temporal aspects and user repre-
sentations, offering a comprehensive perspective on tempo-
ral item relations across behavioral sequences of all users.
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Specifically, considering a user u from the user set U . For
each item vui from the user sequence Su, we construct an
edge between vui and vui+ϵ in G, where ϵ ∈ {1, 2, 3, 4}.
The attributes of this edge include the corresponding times-
tamps tui and tui+ϵ and the user u, which can be represented
as a triplet (tui , t

u
i+ϵ, u). Figure 1 shows a toy example of

this construction process. Note that the same pair of items
may have multiple edges, since they can co-occur in dif-
ferent interaction sequences. Therefore, we use a quintuple
e = (vi, vj , u, t

u
1 , t

u
2 ) to indicate that edge e is built based

on the fact that user u interacted with item vi, vj on tu1 , t
u
2

respectively. Given the backdrop above, the formal problem
definition of our task is presented as follows:
Definition 1 Assume a user set U and item set V . For each
user u ∈ U , the chronologically ordered interaction se-
quence is Su = {vu1 , vu2 , .., vu|Su|}, and its associated times-
tamp sequence is Tu = {tu1 , tu2 , .., tu|Su|}, where tui signi-
fies the timestamp of the interaction (u, vui ). TITG G is con-
structed based on all historical sequences. Our objective is
to forecast the next item that user u will probably interact
with at the (|Su|+ 1)-th step based on Su, Tu, and G.

4 Methodology
In this section, we introduce the technical details of our pro-
posed TGCL4SR. As illustrated in Figure 2, TGCL4SR in-
cludes five main components, i.e., Dual Graph Augmenta-
tion, TiTConv Layer, Temporal Graph Contrastive Learning,
Temporal Sequence Encoder and Prediction Layer. Through
the above parts, our method learns behavior sequence rep-
resentations from both global and local perspectives. Then
representations of each sequence are concatenated at the
Prediction Layer. Finally, we use the multi-task manner for
model learning at the training stage.

4.1 Dual Graph Augmentation
To relieve the problems of data sparsity and noise, we aug-
ment TITG through a dual transformation. We first sample
node neighbors on the graph to obtain subgraphs to directly
lower the size of TITG to compute and alleviate data spar-
sity. Then we add random time disturbance to the subgraphs
so that the model can be less influenced by time noises.

Neighbor Sampling As mentioned above, TITG is a
multi-edge graph. Therefore, directly computing representa-
tions on the whole graph is costly and ineffective. Also, the
sparsity of the graph data may lead to overfitting. Hence, the
neighbor sampling method (Hamilton, Ying, and Leskovec
2017) is applied to derive smaller and augmented graph
views. In specific, given TITG G and an interaction sequence
S , we sample the neighbor nodes of each item v ∈ S in
G randomly and uniformly. We repeat this process with the
sample depth M and the sample size N at each depth. In
this way, we can generate two augmented subgraph views
G1
S = (V1

S , E1
S) and G2

S = (V2
S , E2

S), where V1
S , E1

S ,V2
S , E2

S
are the sets of nodes and edges for G1

S and G2
S , respectively.

Time Disturbance Temporal information sometimes con-
tains noises and cannot precisely indicate the change of
user interest, this requires models to avoid being overly

influenced by the temporal noise in the data. Meanwhile,
the sparsity and noises of the data may result in overfit-
ting. Therefore, we devise the method of time disturbance
to augment the graph data. Here, we randomly add noise
to the timestamp attribute of edges in TITGs to generate
a temporal-augmented graph view from the given graph.
Specifically, taking G1

S as an example, for each edge e ∈ E1
S ,

we add Gaussian noise o1∼N(0, σ) and o2∼N(0, σ) with
probability p to its timestamp attributes tu1 and tu2 respec-
tively. Here, σ is the standard deviation of the Gaussian dis-
tribution. Then we can obtain the temporal-augmented graph
G1′

S , and through the same way we generate G2′

S from G2
S .

Through the two graph-augment methods above, we fi-
nally obtain four enhanced graphs based on sequence S:
G1
S ,G2

S ,G1′

S ,G2′

S , effectually reducing issues of graph scale,
data sparsity and noise impact.

4.2 TiTConv Layer
To learn fine-grained item correlations on TITG, we pro-
pose a Temporal item Transition graph Convolutional layer
(TiTConv). Below we present the details of TiTConv in our
model at its (l + 1)-th layer.

For timestamp attributes of edges, we use the harmonic
encoder (Xia et al. 2021) to encode them:

ϕ(t) = [cos (w1t+ b1) , . . . , cos (wnt+ bn)] , (1)

where cos(·) is the cosine function, n is the hidden dimen-
sion, w1, ..., wn and b1, ..., bn are learnable weights and bias
parameters respectively, ϕ(t) denotes the embedding of the
timestamp t. Then for each edge e = (vi, vj , u, t

u
1 , t

u
2 ) in the

input graph, the message m
(l)
e that vi conveys to vj through

e is calculated as follows:

m
(l)
i = Concat

(
h
(l)
i ,ϕ(0),u

)
, (2)

m
(l)
j = Concat

(
h
(l)
j ,MLP (ϕ (t1) ∥ϕ (t2)) ,u

)
, (3)

m(l)
e = Concat (head1, . . . , headη)Wh, (4)

headk = Attention
(
m

(l)
i WQ

k ,m
(l)
j WK

k ,m
(l)
j W V

k

)
, (5)

where h
(l)
i ,u ∈ R1×n represents the embedding of their

corresponding item vi and user u respectively, ∥ is the con-
catenation operation, MLP is the multi-layer perceptron, η is
the number of heads, WQ

k ,WK
k ,W V

k ∈ R3n×3n/η are pro-
jection matrices for each attention head, and Wh ∈ R3n×3n

is the projection matrix. The attention function is defined as:

Attention(Q,K,V ) = softmax

(
QKT√
d/η

)
V , (6)

where Q,K and V denote queries, keys and values respec-
tively, softmax is the activation function,

√
d/η is the scale

factor. Note that there may exist multiple edges between
vi and vj in many practical datasets, we flatten them and
compute their messages respectively. After message prop-
agation, we can obtain the representation of vk at the next
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Figure 2: The overall architecture of the proposed TGCL4SR.

layer using a sum aggregation and MLP:

h
(l+1)
k = MLP

h
(l)
k ∥

∑
e∈Evk

m(l)
e

 , (7)

where Evk
is the set of edges incident to vk. After that,

GraphSAGE (Hamilton, Ying, and Leskovec 2017) with
mean aggregation is stacked for deeper neighbor features.

Employing shared TiTConv on four augmented graphs
above, at the last layer we can get the embeddings of the
items in S denoted as H1

S ,H
2
S ,H

1′

S ,H2′

S ∈ R|S|×n respec-
tively. We conduct mean pooling on these representations
respectively and obtain z1

S , z2
S , z1′

S , z2′

S ∈ R1×n.

4.3 Temporal Graph Contrastive Learning
To mitigate data sparsity and bolster stable item representa-
tion, we devise the unique graph contrastive learning from
a temporal perspective. In the scenario of SR, positive sam-
ple pairs consist of different views of identical sequences,
while views of different sequences in the same mini-batch
are negative ones. The model should minimize the distance
between positive sample pairs and make negative ones less
similar to improve the uniformity of representations between
augmented graphs derived from identical sequences.

Specifically, we first utilize the subgraph contrastive
learning (SGCL) objective to contrast the representations
of different subgraphs. Negative sampling is adopted (Chen
et al. 2020). For each sequence S in a mini-batch B,
(G1

S ,G2
S) is a positive sample pair, while for other sequence

P ∈ B, (G1
S ,G2

P) is a negative pair. Then InfoNCE (He et al.
2020) is applied to calculate the loss of SGCL on S:

LSGCL(S) = − log
exp

(
sim

(
z1
S , z

2
S

)
/τ
)∑

P∈B exp (sim (z1
S , z

2
P) /τ)

, (8)

where sim(·, ·) is the cosine similarity function, τ is the
temperature parameter for SGCL.

Besides SGCL, a disturbed graph contrastive learn-
ing (DGCL) objective is designed to contrast the hidden

representations of original subgraphs and their temporal-
augmented graphs. For each sequence S ∈ B, (G1

S ,G1′

S ) and
(G2

S ,G2′

S ) are positive sample pairs, while for other sequence
P ∈ B, (G1

S ,G1′

P ) and (G2
S ,G2′

P ) are negative ones. Then the
loss function of DGCL on S is formulated as follows:

LDGCL(S)=−1

2

(
log

exp
(
sim

(
z1
S , z

1′
S

)
/τ ′
)∑

P∈B exp (sim (z1
S , z

1′
P ) /τ ′)

+ log
exp

(
sim

(
z2
S , z

2′
S

)
/τ ′
)∑

P∈B exp (sim (z2
S , z

2′
P ) /τ ′)

)
,

(9)

where τ ′ is the temperature parameter for DGCL.
Then, we sum up them as the total loss for TGCL on S:

LTGCL(S) = LSGCL(S) + LDGCL(S). (10)

4.4 Temporal Sequence Encoder
To study the representations of user local interaction se-
quences with temporal information, we design a Temporal
Sequence Encoder. To effectively learn the complex sequen-
tial interest patterns, we utilize the stacked Transformer lay-
ers as the basic sequence encoder, which can capture the
evolving user interest. Considering that the length of time
intervals may affect the influence of the current interac-
tion toward the next interaction in a sequence (Chen et al.
2022a; Wang et al. 2021a), we combine the representations
of items and internal time intervals. Given the sequence S
and its corresponding timestamp sequence T , we first con-
vert {t1, .., t|S|} into a time-interval sequence:{

δ1, δ2, . . . , δ|S|
}
=
{
0, t2 − t1, . . . , t|S| − t|S|−1

}
. (11)

After that, in light of the logarithmic decay for user inter-
est (Wu, Cai, and Wang 2020), we apply the following func-
tion to calculate the corresponding position embedding of
the time interval δi:

posi = ⌊a log (δi/c+ 1)⌋, (12)
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where a and c are scaling constants. After that we get the
embedding of δi denoted as δi ∈ R1×n, and add it to the
embedding of the i-th item in S as the input representation
R

(0)
S ∈ R|S|×n. Next, given the sequential representation

R
(l)
S at the l-th layer of the multi-head self-attention Trans-

former encoder, the output of the (l+1)-th layer is as below:

R
(l+1)
S = Transformer(R

(l)
S ). (13)

4.5 Prediction Layer
After performing the designed TiTConv and temporal se-
quence encoder for Su, we can obtain the representations
H1

Su and H2
Su from augmented temporal graphs, as well

as RSu from the user sequence. The next step involves
concatenating and integrating these multi-faceted sequential
features in the following manner:

P u = AttNet
((
H1

Su∥H2
Su∥RSu

)
WT

)
, (14)

where P u ∈ R1×n is the interest matrix of user u, WT ∈
R3n×n is a trainable weight matrix. AttNet(·) denotes the
attention network employed in (Zhang et al. 2022). Then the
following formulation calculates the possibility that the user
u would interact with the expected item v at the (|Su|+1)-th
step according to Su:

ŷSu

v = Sigmoid
(
P uvT

)
, (15)

where Sigmoid is the activation function, v ∈ R1×n denotes
the corresponding embedding of v.

4.6 Model Optimization
In order to make model training more stable and achieve
better recommendation performance, we combine the above
TGCL to enhance the sequential recommendation with an
additional MMD loss in a multi-task learning manner.

Firstly, the main target of the sequential recommendation
is to use the behavior sequence Su to predict the next item
that user u is most interested in. For the interaction sequence
Su = {vu1 , vu2 , ..., vu|Su|} of each user u, we take the sub-
sequence Su

k−1 = {vu1 , vu2 , ..., vuk−1} and its corresponding
target item vuk as training data at each time step k from 2
to |Su|. Then for all users, we adopt the cross-entropy loss
function to optimize the model:

LSR = −
∑
u∈U

|Su|∑
k=2

log
exp

(
ŷ
Su
k−1

vu
k

)
∑

v∈V exp
(
ŷ
Su
k−1

v

) , (16)

We also attach MMD (Li, Swersky, and Zemel 2015) as
an auxiliary objective to our training task to advance the se-
mantic agreement between item embeddings and represen-
tations learned from TITG. Given two sample sets of two
representation distributions X = {x1, ...,xm} and Y =
{y1, ...,ym′}, MMD between them can be estimated as:

MMD(X,Y ) =
1

m2

m∑
i=1

m∑
j=1

K (xi,xj)+

1

m′2

m′∑
i=1

m′∑
j=1

K (yi,yj)−
2

mm′

m∑
i=1

m′∑
j=1

K (xi,yj) ,

(17)

Datasets Beauty Games CDs Comics

# User 22,363 24,303 75,258 14,109
# Item 12,101 10,672 64,443 17,035
# Interaction 198,502 231,780 1,097,592 353,878
Avg. actions/user 8.88 9.53 14.58 25.08
Avg. actions/item 16.40 21.72 17.03 20.77
# Edges in TITG 398,636 497,113 3,053,824 1,163,516

Table 1: Statistics of processed datasets.

K (x, y) = exp

(
−∥x− y∥2

2ρ2

)
(18)

where K (·, ·) denotes the Gaussian kernel with the band-
width ρ. Following (Zhang et al. 2022), we intend to mini-
mize MMD between the local sequence embedding Su and
the temporal global context H1

Su and H2
Su . Therefore, the

MMD loss for Su is as follows.

LMMD(Su)=MMD
(
Su,H1

Su

)
+MMD

(
Su,H2

Su

)
. (19)

Finally, we sum up the loss functions of the main predic-
tion task, temporal graph contrastive learning task, and the
MMD constraint to reach the following objective:

L=LSR+
∑
u∈U

|Su|∑
k=2

(
λ1LTGCL(S

u
k−1)+λ2LMMD(Su

k−1)
)
,

(20)

where λ1, λ2 are loss weight hyper-parameters.

5 Experiments
In this section, we present detailed experiments to demon-
strate the effectiveness of our proposed TGCL4SR on se-
quential recommendation tasks.

5.1 Experiment Settings
Datasets. Four public datasets are chosen for the evalua-
tion of SR models from Amazon Review (He and McAuley
2016) and Goodreads (Wan et al. 2019). Amazon Review
collects user reviews on products in various categories
from Amazon. We choose the datasets of three categories
“Beauty”, “Video Games” and “CDs” for experiments. In
addition, Goodreads Review contains user reviews on books
of various genres from Goodreads. We take the dataset of
“Comics Graphic” for evaluation. For each dataset, we re-
move duplicated interactions and sort each user’s interac-
tions by their timestamps chronologically to build user be-
havior sequences. We filter out users and items that have less
than 5 reviews to get the 5-core subset of each dataset. The
statistics of processed datasets are shown in Table 1.

Metrics and Evaluation. The performances are evaluated
by top-K Hit Ratio (HR@K) and Normalized Discounted
Cumulative Gain (NDCG@K), K ∈ {10, 20}. We adopt
the leave-one-out evaluation strategy. The ranking of pre-
dictions is computed on the full item set but not sampling.
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Datasets Metrics GRU4Rec SASRec TiSASRec CL4SRec DuoRec TCPSRec GCL4SR MStein TGCL4SR

Beauty

HR@10
HR@20
NDCG@10
NDCG@20

0.0305
0.0467
0.0164
0.0305

0.0550
0.0789
0.0280
0.0339

0.0561
0.0837
0.0298
0.0375

0.0579
0.0905
0.0278
0.0370

0.0690
0.1033
0.0369
0.0491

0.0857
0.1202
0.0427
0.0519

0.0910
0.1222
0.0548
0.0627

0.0774
0.1058
0.0463
0.0545

0.0946
0.1295
0.0557
0.0648

Games

HR@10
HR@20
NDCG@10
NDCG@20

0.0430
0.0683
0.0225
0.0288

0.0798
0.1178
0.0371
0.0466

0.0779
0.1175
0.0381
0.0479

0.0968
0.1513
0.0478
0.0616

0.1183
0.1809
0.0619
0.0776

0.1192
0.1847
0.0563
0.0728

0.1406
0.1991
0.0788
0.0935

0.1066
0.1550
0.0586
0.0709

0.1572
0.2239
0.0884
0.1051

CDs

HR@10
HR@20
NDCG@10
NDCG@20

0.0059
0.0102
0.0031
0.0041

0.0286
0.0387
0.0141
0.0166

0.0351
0.0499
0.0159
0.0197

0.0498
0.0771
0.0244
0.0313

0.0931
0.1366
0.0454
0.0564

0.0914
0.1365
0.0413
0.0527

0.1107
0.1546
0.0631
0.0741

0.0544
0.0737
0.0318
0.0367

0.1119
0.1529
0.0652
0.0756

Comics

HR@10
HR@20
NDCG@10
NDCG@20

0.0425
0.0746
0.0213
0.0293

0.0846
0.1045
0.0482
0.0532

0.0857
0.1087
0.0498
0.0556

0.0911
0.1298
0.0487
0.0585

0.1736
0.2248
0.1061
0.1190

0.1787
0.2267
0.1000
0.1131

0.1831
0.2260
0.1294
0.1402

0.1628
0.1934
0.1187
0.1264

0.1952
0.2463
0.1346
0.1470

Table 2: Experimental results of TGCL4SR along with all baselines on four datasets. The best score and the second-best score
of each row are bolded and underlined respectively.

Baselines. We compare TGCL4SR with two groups of
representative and competitive SR baselines. The first
group includes SR models without contrastive learn-
ing. GRU4Rec (Hidasi and Karatzoglou 2018) and SAS-
Rec (Kang and McAuley 2018) adopt RNN and Trans-
former respectively as sequence encoders. In addition, Ti-
SASRec (Li, Wang, and McAuley 2020) adds a time-interval
aware mechanism to SASRec. The second group contains
SR models taking contrastive learning objectives as an aux-
iliary training task. CL4SRec (Xie et al. 2022) applies con-
trastive learning on augmented sequences for representation
learning. DuoRec (Qiu et al. 2022) proposes a model-level
augmentation and conducts contrastive learning between se-
mantically similar sequences. TCPSRec (Tian et al. 2022)
designs specific temporal pre-training objectives to learn in-
terest patterns better. GCL4SR (Zhang et al. 2022) utilizes
graph contrastive learning to obtain more informative repre-
sentations. MStein (Fan et al. 2023) computes Wasserstein
distance between augmented sequences as mutual informa-
tion to achieve effective training.

Implementation Details. Our work is implemented by
Pytorch. The sample parameters M and N are set as 2 and
20 respectively. We set the training batch size and all the em-
bedding dimension sizes as 1024 and 64 respectively. The
max length of user sequences is limited to 50. We set both
the number of self-attention blocks and multi-heads for TiT-
Conv and the temporal sequence encoder as 2. The scaling
constant a is searched in {50, 100, 200, 400} and c is set
as 60000. Next, we set p as 0.5, and tune σ within [0.01, 1].
For TGCL, we tune τ and τ ′ within [0.1, 1]. Last, we search
λ1 within [0.25, 1.5] stepping by 0.25, while λ2 is selected
from {0.05, 0.1, 0.2, 0.3, 0.5}. We repeat the experiments
three times and report the average results. The experiments
are conducted on a server with fifteen vCPU AMD EPYC
7543 32-Core Processors and one NVIDIA A40 GPU.
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Figure 3: Performances of TGCL4SR with its variants on
Beauty and Comics dataset.

5.2 Results and Analysis

Overall Comparison. Table 2 shows the overall evalua-
tion results of TGCL4SR and other baseline models. Based
on the results, we get key observations as follows: First,
TGCL4SR performs best in most of the metrics over all
datasets. It achieves improvements ranging from 1.08% to
12.4% over the best baseline, showing the effectiveness of
our method. Second, TiSASRec and TGCL4SR outperform
general SR methods in most cases, indicating the utility
of temporal information for SR. Whereas TGCL4SR still
performs better, since it utilizes absolute and relative time,
and adds time disturbance to TITG. By contrast, TiSASRec
only use time interval information on sequences. Thus our
model exploits richer temporal information and lessens in-
fluences from noise simultaneously. Third, by contrastive
learning, CL4SRec, GCL4SR and TGCL4SR perform bet-
ter than general SR methods, yet TGCL4SR achieves fur-
ther advancement. We attribute this to our designed tem-
poral graph contrastive learning based on dual graph aug-
mentation on the TITG. In comparison, CL4SRec aug-
ments each sequence separately, while GCL4SR simply en-
hances data by neighbor sampling on weighted transition
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Figure 4: TGCL4SR’s performance comparison w.r.t different hyper-parameters in terms of NDCG@20.

graphs. Therefore, TGCL4SR obtains more refined informa-
tion from contrastive learning than CL4SRec and GCL4SR.
Last, TGCL4SR improves higher on Beauty, Games and
Comics than on CDs dataset. A possible reason is that larger
scale of sequences in CDs dataset alleviates the difficulty of
transition pattern modeling, limiting the improvement from
temporal information.

Ablation Study. To verify the effectiveness of key com-
ponents in TGCL4SR, we conduct an ablation study on
Beauty and Comics datasets with the following conditions:
1) -DGCL removing LDGCL, 2) -SGCL removing LSGCL,
3) -TGCL removing LTGCL, 4) -TiTConv replacing TiT-
Conv by GCN with stacked GraphSAGE, 5) -interval us-
ing the sequence encoder without adding the embeddings
of time intervals. The corresponding evaluation results are
illustrated in Figure 3. We can observe removing any key
components causes the performance to drop off, indicating
that all key components are useful for SR tasks. In specific,
TGCL is the most significant since the model without it
always performs worst. That’s because SGCL and DGCL
improve representation learning from different aspects of
graphs. What’s more, TiTConv achieves higher improve-
ments on Comics than Beauty. A probable cause is that each
item in Comics has more neighbors on average in TITG than
Beauty, thus TiTConv can learn richer item transition pat-
terns. Besides, time interval embeddings play an important
role, because they directly influence the hidden representa-
tions of sequences generated by sequence encoders.

Parameter Sensitivity. We choose three important hyper-
parameters λ1, λ2, and σ to study their influences on the
TGCL4SR model. To control variables, when changing one
of the parameters, we keep other parameters optimal. Fig-
ure 4 shows the consequential evaluation results on Beauty
and Games dataset. λ1 is the weight of TGCL loss, and λ2

decides the intensity of MMD loss. We can see setting their
values either too low or too high reduces the performance.
Appropriate values of λ1 and λ2 can make two auxiliary ob-
jectives improve the model more impressively. Next, σ rep-
resents the intensity of added time perturbations. It’s obvi-
ous that unsuitable σ can cause a decline in performance.
The model will get less informative self-supervised signals
if the disturbance is too light, while an excessive disturbance
can hinder transition pattern learning.

(a) Neighbors of v11031 (b) Neighbors of v2654

Figure 5: Timestamp lag influences representation consis-
tency between neighbor items in TITG.

Case Study. We conduct a case study on Comics dataset to
investigate whether item representations learned from TITG
conform to item correlations. Specifically, We select an item
with huge time differences with its neighbors (v11031’s av-
erage timestamp lag with neighbors is 30787627.2) and an-
other having slight ones with its neighbors (v2654’s average
timestamp lag with neighbors is 51.55). Then we visual-
ize their neighbor item embeddings on the temporal item
transition graph in Figure 5. This chart shows that neigh-
bors have similar representations to the center node v2654
while v11031’s neighbors are quite inconsistent. It demon-
strates that TGCL4SR can effectively utilize temporal infor-
mation and learn item correlations wisely. Additionally, note
that adding time perturbation may be more useful to study
the representation of v2654 than v11031, due to the enormous
average timestamp lag of the latter one.

6 Conclusion
In this paper, we proposed a novel sequential recommenda-
tion model named TGCL4SR, which learned user interest
evolution on item transition graphs and their behavior se-
quences. Along this line, we designed the Temporal Item
Transition Graph and made dual augmentation on it for bet-
ter use of time information. Meanwhile, the graph neural
network TiTConv was designed to capture item transition
patterns effectively. Next, we proposed the temporal graph
contrastive learning to enhance representation learning. We
also applied time interval embeddings on the sequence en-
coder for comprehensive temporal information. The results
of extensive experiments on four real-world datasets demon-
strated the effectiveness of the proposed TGCL4SR.
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